Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
Velma Lopez; Estee Y Cramer; Robert Pagano; John M Drake; Eamon B O'Dea; Benjamin P Linas; Turgay Ayer; Jade Xiao; Madeline Adee; Jagpreet Chhatwal; Mary A Ladd; Peter P Mueller; Ozden O Dalgic; Johannes Bracher; Tilmann Gneiting; Anja Mühlemann; Jarad Niemi; Ray L Evan; Martha Zorn; Yuxin Huang; Yijin Wang; Aaron Gerding; Ariane Stark; Dasuni Jayawardena; Khoa Le; Nutcha Wattanachit; Abdul H Kanji; Alvaro J Castro Rivadeneira; Sen Pei; Jeffrey Shaman; Teresa K Yamana; Xinyi Li; Guannan Wang; Lei Gao; Zhiling Gu; Myungjin Kim; Lily Wang; Yueying Wang; Shan Yu; Daniel J Wilson; Samuel R Tarasewicz; Brad Suchoski; Steve Stage; Heidi Gurung; Sid Baccam; Maximilian Marshall; Lauren Gardner; Sonia Jindal; Kristen Nixon; Joseph C Lemaitre; Juan Dent; Alison L Hill; Joshua Kaminsky; Elizabeth C Lee; Justin Lessler; Claire P Smith; Shaun Truelove; Matt Kinsey; Katharine Tallaksen; Shelby Wilson; Luke C Mullany; Lauren Shin; Kaitlin Rainwater-Lovett; Dean Karlen; Lauren Castro; Geoffrey Fairchild; Isaac Michaud; Dave Osthus; Alessandro Vespignani; Matteo Chinazzi; Jessica T Davis; Kunpeng Mu; Xinyue Xiong; Ana Pastore y Piontti; Shun Zheng; Zhifeng Gao; Wei Cao; Jiang Bian; Chaozhuo Li; Xing Xie; Tie-Yan Liu; Juan Lavista Ferres; Shun Zhang; Robert Walraven; Jinghui Chen; Quanquan Gu; Lingxiao Wang; Pan Xu; Weitong Zhang; Difan Zou; Graham Casey Gibson; Daniel Sheldon; Ajitesh Srivastava; Aniruddha Adiga; Benjamin Hurt; Gursharn Kaur; Bryan Lewis; Madhav Marathe; Akhil S Peddireddy; Przemyslaw Porebski; Srinivasan Venkatramanan; Lijing Wang; Pragati V Prasad; Alexander E Webber; Jo W Walker; Rachel B Slayton; Matthew Biggerstaff; Nicholas G Reich; Michael A Johansson.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.05.30.23290732

Résumé

During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7 million forecasts of weekly state-level COVID-19 cases for predictions 1-4 weeks into the future submitted by 24 teams from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were defined by the effective reproduction number. Overall, we found high variation in skill across individual models, with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was generally higher for larger jurisdictions (e.g., states compared to counties). Over time, forecasts generally performed worst in periods of rapid changes in reported cases (either in increasing or decreasing epidemic phases) with 95% prediction interval coverage dropping below 50% during the growth phases of the winter 2020, Delta, and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in transmission dynamics. However, while most COVID-19 case forecasts outperformed a naive baseline model, even the most accurate case forecasts were unreliable in key phases. Further research could improve forecasts of leading indicators, like COVID-19 cases, by leveraging additional real-time data, addressing performance across phases, improving the characterization of forecast confidence, and ensuring that forecasts were coherent across spatial scales. In the meantime, it is critical for forecast users to appreciate current limitations and use a broad set of indicators to inform pandemic-related decision making. Author SummaryAs SARS-CoV-2 began to spread throughout the world in early 2020, modelers played a critical role in predicting how the epidemic could take shape. Short-term forecasts of epidemic outcomes (for example, infections, cases, hospitalizations, or deaths) provided useful information to support pandemic planning, resource allocation, and intervention. Yet, infectious disease forecasting is still a nascent science, and the reliability of different types of forecasts is unclear. We retrospectively evaluated COVID-19 case forecasts, which were often unreliable. For example, forecasts did not anticipate the speed of increase in cases in early winter 2020. This analysis provides insights on specific problems that could be addressed in future research to improve forecasts and their use. Identifying the strengths and weaknesses of forecasts is critical to improving forecasting for current and future public health responses.


Sujets)
COVID-19 , Mort , Maladies transmissibles
2.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.11.18.517139

Résumé

Background: Throughout the COVID-19 pandemic, the SARS-CoV-2 virus has continued to evolve, with new variants outcompeting existing variants and often leading to different dynamics of disease spread. Methods: In this paper, we performed a retrospective analysis using longitudinal sequencing data to characterize differences in the speed, calendar timing, and magnitude of 13 SARS-CoV-2 variant waves/transitions for 215 countries and sub-country regions, between October 2020 and October 2022. We then clustered geographic locations in terms of their variant behavior across all Omicron variants, allowing us to identify groups of locations exhibiting similar variant transitions. Finally, we explored relationships between heterogeneity in these variant waves and time-varying factors, including vaccination status of the population, governmental policy, and the number of variants in simultaneous competition. Findings: This work demonstrates associations between the behavior of an emerging variant and the number of co-circulating variants as well as the demographic context of the population. We also observed an association between high vaccination rates and variant transition dynamics prior to the Mu and Delta variant transitions. Interpretation: These results suggest the behavior of an emergent variant may be sensitive to the immunologic and demographic context of its location. Additionally, this work represents the most comprehensive characterization of variant transitions globally to date. Funding: Laboratory Directed Research and Development (LDRD), Los Alamos National Laboratory


Sujets)
COVID-19 , Infection de laboratoire
3.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.07.18.22277763

Résumé

The COVID-19 pandemic has caused severe health, economic, and societal impacts across the globe. Although highly efficacious vaccines were developed at an unprecedented rate, the heterogeneity in vaccinated populations has reduced the ability to achieve herd immunity. Specifically, as of Spring 2022, the 0–4 year-old population is still unable to be vaccinated and vaccination rates across 5-11 year olds are low. Additionally, vaccine hesitancy for older populations has further stalled efforts to reach herd immunity thresholds. This heterogeneous vaccine landscape increases the challenge of anticipating disease spread in a population. We developed an age-structured Susceptible-Infectious-Recovered-type mathematical model to investigate the impacts of unvaccinated subpopulations on herd immunity. The model considers two types of undervaccination - age-related and behavior-related - by incorporating four age groups based on available FDA-approved vaccines. The model accounts for two different types of vaccines, mRNA (e.g., Pfizer, Moderna) and vector (e.g., Johnson and Johnson), as well as their effectiveness. Our goal is to analyze different scenarios to quantify which subpopulations and vaccine characteristics (e.g., rate or efficacy) most impact infection levels in the United States, using the state of New Mexico as an example.


Sujets)
COVID-19
4.
arxiv; 2021.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2110.01546v1

Résumé

This document details the methodology of the Los Alamos National Laboratory COVID-19 forecasting model, COFFEE (COVID-19 Forecasts using Fast Evaluations and Estimation).


Sujets)
COVID-19
5.
Estee Y Cramer; Evan L Ray; Velma K Lopez; Johannes Bracher; Andrea Brennen; Alvaro J Castro Rivadeneira; Aaron Gerding; Tilmann Gneiting; Katie H House; Yuxin Huang; Dasuni Jayawardena; Abdul H Kanji; Ayush Khandelwal; Khoa Le; Anja Muhlemann; Jarad Niemi; Apurv Shah; Ariane Stark; Yijin Wang; Nutcha Wattanachit; Martha W Zorn; Youyang Gu; Sansiddh Jain; Nayana Bannur; Ayush Deva; Mihir Kulkarni; Srujana Merugu; Alpan Raval; Siddhant Shingi; Avtansh Tiwari; Jerome White; Spencer Woody; Maytal Dahan; Spencer Fox; Kelly Gaither; Michael Lachmann; Lauren Ancel Meyers; James G Scott; Mauricio Tec; Ajitesh Srivastava; Glover E George; Jeffrey C Cegan; Ian D Dettwiller; William P England; Matthew W Farthing; Robert H Hunter; Brandon Lafferty; Igor Linkov; Michael L Mayo; Matthew D Parno; Michael A Rowland; Benjamin D Trump; Sabrina M Corsetti; Thomas M Baer; Marisa C Eisenberg; Karl Falb; Yitao Huang; Emily T Martin; Ella McCauley; Robert L Myers; Tom Schwarz; Daniel Sheldon; Graham Casey Gibson; Rose Yu; Liyao Gao; Yian Ma; Dongxia Wu; Xifeng Yan; Xiaoyong Jin; Yu-Xiang Wang; YangQuan Chen; Lihong Guo; Yanting Zhao; Quanquan Gu; Jinghui Chen; Lingxiao Wang; Pan Xu; Weitong Zhang; Difan Zou; Hannah Biegel; Joceline Lega; Timothy L Snyder; Davison D Wilson; Steve McConnell; Yunfeng Shi; Xuegang Ban; Robert Walraven; Qi-Jun Hong; Stanley Kong; James A Turtle; Michal Ben-Nun; Pete Riley; Steven Riley; Ugur Koyluoglu; David DesRoches; Bruce Hamory; Christina Kyriakides; Helen Leis; John Milliken; Michael Moloney; James Morgan; Gokce Ozcan; Chris Schrader; Elizabeth Shakhnovich; Daniel Siegel; Ryan Spatz; Chris Stiefeling; Barrie Wilkinson; Alexander Wong; Sean Cavany; Guido Espana; Sean Moore; Rachel Oidtman; Alex Perkins; Zhifeng Gao; Jiang Bian; Wei Cao; Juan Lavista Ferres; Chaozhuo Li; Tie-Yan Liu; Xing Xie; Shun Zhang; Shun Zheng; Alessandro Vespignani; Matteo Chinazzi; Jessica T Davis; Kunpeng Mu; Ana Pastore y Piontti; Xinyue Xiong; Andrew Zheng; Jackie Baek; Vivek Farias; Andreea Georgescu; Retsef Levi; Deeksha Sinha; Joshua Wilde; Nicolas D Penna; Leo A Celi; Saketh Sundar; Dave Osthus; Lauren Castro; Geoffrey Fairchild; Isaac Michaud; Dean Karlen; Elizabeth C Lee; Juan Dent; Kyra H Grantz; Joshua Kaminsky; Kathryn Kaminsky; Lindsay T Keegan; Stephen A Lauer; Joseph C Lemaitre; Justin Lessler; Hannah R Meredith; Javier Perez-Saez; Sam Shah; Claire P Smith; Shaun A Truelove; Josh Wills; Matt Kinsey; RF Obrecht; Katharine Tallaksen; John C. Burant; Lily Wang; Lei Gao; Zhiling Gu; Myungjin Kim; Xinyi Li; Guannan Wang; Yueying Wang; Shan Yu; Robert C Reiner; Ryan Barber; Emmanuela Gaikedu; Simon Hay; Steve Lim; Chris Murray; David Pigott; B. Aditya Prakash; Bijaya Adhikari; Jiaming Cui; Alexander Rodriguez; Anika Tabassum; Jiajia Xie; Pinar Keskinocak; John Asplund; Arden Baxter; Buse Eylul Oruc; Nicoleta Serban; Sercan O Arik; Mike Dusenberry; Arkady Epshteyn; Elli Kanal; Long T Le; Chun-Liang Li; Tomas Pfister; Dario Sava; Rajarishi Sinha; Thomas Tsai; Nate Yoder; Jinsung Yoon; Leyou Zhang; Sam Abbott; Nikos I I Bosse; Sebastian Funk; Joel Hellewell; Sophie R Meakin; James D Munday; Katharine Sherratt; Mingyuan Zhou; Rahi Kalantari; Teresa K Yamana; Sen Pei; Jeffrey Shaman; Turgay Ayer; Madeline Adee; Jagpreet Chhatwal; Ozden O Dalgic; Mary A Ladd; Benjamin P Linas; Peter Mueller; Jade Xiao; Michael L Li; Dimitris Bertsimas; Omar Skali Lami; Saksham Soni; Hamza Tazi Bouardi; Yuanjia Wang; Qinxia Wang; Shanghong Xie; Donglin Zeng; Alden Green; Jacob Bien; Addison J Hu; Maria Jahja; Balasubramanian Narasimhan; Samyak Rajanala; Aaron Rumack; Noah Simon; Ryan Tibshirani; Rob Tibshirani; Valerie Ventura; Larry Wasserman; Eamon B O'Dea; John M Drake; Robert Pagano; Jo W Walker; Rachel B Slayton; Michael Johansson; Matthew Biggerstaff; Nicholas G Reich.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.02.03.21250974

Résumé

Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. In 2020, the COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized hundreds of thousands of specific predictions from more than 50 different academic, industry, and independent research groups. This manuscript systematically evaluates 23 models that regularly submitted forecasts of reported weekly incident COVID-19 mortality counts in the US at the state and national level. One of these models was a multi-model ensemble that combined all available forecasts each week. The performance of individual models showed high variability across time, geospatial units, and forecast horizons. Half of the models evaluated showed better accuracy than a naive baseline model. In combining the forecasts from all teams, the ensemble showed the best overall probabilistic accuracy of any model. Forecast accuracy degraded as models made predictions farther into the future, with probabilistic accuracy at a 20-week horizon more than 5 times worse than when predicting at a 1-week horizon. This project underscores the role that collaboration and active coordination between governmental public health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks. f


Sujets)
COVID-19
6.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.12.24.20248826

Résumé

We report insights from ten weeks of collaborative COVID-19 forecasting for Germany and Poland (12 October - 19 December 2020). The study period covers the onset of the second wave in both countries, with tightening non-pharmaceutical interventions (NPIs) and subsequently a decay (Poland) or plateau and renewed increase (Germany) in reported cases. Thirteen independent teams provided probabilistic real-time forecasts of COVID-19 cases and deaths. These were reported for lead times of one to four weeks, with evaluation focused on one- and two-week horizons, which are less affected by changing NPIs. Heterogeneity between forecasts was considerable both in terms of point predictions and forecast spread. Ensemble forecasts showed good relative performance, in particular in terms of coverage, but did not clearly dominate single-model predictions. The study was preregistered and will be followed up in future phases of the pandemic.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche